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Abstract 

Two d i s t i n c t  but r e l a t e d  r e s u l t s  a r e  obtained. F i r s t ,  an 
i t e r a t i v e  method i s  derived f o r  obtaining t h e  so lu t ion  of optimal 
cont ro l  problems f o r  Markov chains. The method usual ly  converges 
much f a s t e r ,  and requires l e s s  computer storage space, than t h e  
methods of Howard o r  Eaton and Zadeh. Second, non-linear f i n i t e  
difference equations which ' approximate' t h e  non-linear degenerate 
e l l i p t i c  equation (*) a r i s i n g  out of the  s tochas t ic  optimization 
problem ( f o r  diffusion processes) a r e  found. 
and t h e i r  solution, may have a meaning f o r  the  cont ro l  problem even 
when t h e  e l l i p t i c  equation f o r  the cos t  i s  degenerate. The i t e r a t i v e  
methods (version of the Jacobi and Gauss-Seidel) f o r  t h e  i t e r a t i v e  
so lu t ion  o f  these non-linear systems a r e  discussed and compared. 
Both converge t o  the  solut ion (provided t h a t  t h e  difference equations 
were derived using the  method introduced i n  the  paper), one (new t o  
t h i s  paper) often much f a s t e r  than the  other  (Theorem 2) .  I n  fac t ,  
t h e  t y p i c a l  time required f o r  the  numerical so lu t ion  i s  about the 
time required f o r  a re la ted  l i n e a r  problem. 
the  difference equations, and t h e  proof of convergence of t h e  
associated i t e r a t i v e  procedures, i s  i l l u s t r a t e d  by a de ta i led  example. 
For a wide var ie ty  of non-linear degenerate e l l i p t i c  boundary value 
problems, the method yields  a s u i t a b l e  s e t  of non-linear f i n i t e  
difference equations and implies t h a t  the  associated i t e r a t i v e  pro- 
cedures converge. 

The difference equations, 

The method of obtaining 
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METHODS FOR THE NUMERICAL SOLUTION OF DEGENEMTE LINEAR 

AND NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 

Harold J. Kushner 

The paper i s  concerned with t h e  formation of,and i t e r a t i v e  solu- 

t i o n  t o , f i n i t e  difference equations for non-linear degenerate boundary 

value problems which, loose ly  speaking, have the  form (*) i n  a domain 

D, where boundary values V(x) = B(x) on ( the boundary of D )  are 

as s igned. 

a'(x) + min (c f .  ( x , u ) p  + k(x,u) 1 = 0 
i a i j ( X ) m  i j  U i 1 

i, j 
(*) c a (x)& a%Cx + max (c f .  ( x , u ) p  + k(x,u))  = 0 

1 i, j i j  u i  i i j  

u i s  a vector  parameter which va r i e s  i n  a compact s e t  U, and 

( a i j (x ) )  

of f u l l  rank. 

i s  non-negative d e f i n i t e  matrix which may possibly not  be 

If the  matrix (aij (x) 1 i s  not of fill rank, t he re  a re  questions 

concerning the  existence,  uniqueness and smoothness of so lu t ions  t o  

(*). 

i n sens i t i ve  t o  the  values of B(x) on some p a r t  of a. Nevertheless, 

under the  m i l d  conditions imposed, t h e  s e t  of d i f fe rence  equations 

which we obtain do have a unique so lu t ion  and, moreover, can be given 

a physical  i n t e rp re t a t ion  as a so lu t ion  t o  a physical  problem which i s  

c lose ly  r e l a t ed  t o  a physical  problem from which t h e  equation (*) may 

arise (see Par t  I). 

In  par t icu lar ,  even i f  there  i s  a solution, it may possibly be 

I n  Par t  I1 of t h i s  paper, we descr ibe a technique f o r  choosing 
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a difference scheme, and prove t h a t  t h e  (Jacobit ) i t e r a t i v e  procedure 

f o r  the  s e t  of non-linear difference equations converges t o  a unique 

solution, regardless of t h e  i n i t i a l  guess. I n  Section IV, we prove 

tha t ,  under c e r t a i n  conditions t h e  corresponding Gauss Seidel  

i t e r a t i v e  method f o r  t he  non-linear d i f fe rence  system converges f a s t e r  

than the  Jacobimethod, exact ly  as f o r  the  l i n e a r  case [l]. 

The method of Section I1 draws upon a s i m i l a r i t y  of form be- 

tween ce r t a in  d i f fe rence  approximations t o  (*) and c e r t a i n  equations 

obtained i n  t h e  optimal cont ro l  of Markov chains. 

i s  c lear ,  we need only r e f e r  t o  the  re levant  con t ro l  theory l i t e r a -  

t u r e  f o r  the  proofs of convergence ( f o r  t h e  Jacobi  method). Although 

relevant  r e s u l t s  from cont ro l  theory [2], [3] have been ava i lab le  f o r  

severa l  years, it appears t h a t  even workers concerned with t h e  con- 

t r o l  of continuous time Markov processes (which of ten  y i e l d  equations 

of t h e  type (*)) do not  seem t o  have made use of them i n  studying t h e  

Once t h e  s i m i l a r i t y  

convergence proper t ies  of numerical schemes for (*). 

re levant  Markov chain r e s u l t s  a r e  s ta ted .  

simple development (using only simple proper t ies  of Markov chains) of 

t he  usual  r e s u l t s  on t h e  Jacobi and Gauss-Seidel [l] matrix i t e r a t i v e  

I n  Pa r t  I, t h e  

I n  Pa r t  111, we give a very 

techniques.. Aside from providing a simple a l t e r n a t i v e  der ivat ion,  t h e  

point  of view i s  use fu l  i n  t h a t  it assigns an i n t e r e s t i n g  i n t u i t i v e  

in te rpre ta t ion  t o  t he  methods, and provides some ins igh t  i n t o  the  
.. - .  . .  

'The terminology i s  t h a t  of Vasga [l]. The exact  schemes are de- 
scr ibed i n  Sections I and 11. 
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problem of ordering the grid points (for the Gauss-Seidel procedure) 

in order to achieve a more rapid convergence. Numerical results in- 

dicate that, generally speaking, the iterative procedures for the non- 

linear problems converge about as fast as the corresponding iterative 

procedures for the linear problems obtained by fixing the u 

to be some function of x with values in U. 

in (*) 
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I. Results - From Stochastic Control Theory! 

The techniques of the sequel involve simple calculat ions with the  

t r a n s i t i o n  probabi l i t i es  of Markov chains. Let Xo,X1, ... be a sequence 

of random variables which take values i n  the  s t a t e  space S = (O,l, . . .,N). 
Each element of S i s  ca l led  a s t a t e .  I f  Xn = i, we say t h a t  t h e  

process (x,) is  i n  s t a t e  i a t  time n. Let P ( x ~ + ~  E rlxo = io,. . . ,xn = 

in} denote the probabi l i ty  t h a t  X i s  i n  r ( i n  S)  given t h a t  Xo = 
n+m 

io, ..., X = i The process (X,) i s  ca l led  a Markov process (see [4] 

f o r  more d e t a i l s )  i f  the  'Markov property' P(Xn+m e FIXo = io,. . . ,Xn = 

i 1 = P{X,+~ E r l x  = in) 

i n  S. Define t h e  t r a n s i t i o n  probabi l i t i es  Pi j  = 

where 

probabi l i ty  pm = P(Xn+m = j l X n  = i). 

n n'  

holds f o r  a l l  I? C S, m > 0 and io,. . .,in 

= j l X n  = i], 

n n 

does not depend on n. Define t h e  m-step t r a n s i t i o n  P i  j 

The Markov property implies t h a t  
i j  

(see r41 )  

n+m n m  
Pij  = PikPkj k=O 

f o r  any n 2 0, m 2 0. Let s t a t e  0 be an 'absorbing' s t a t e  i n  t h a t  

(once i n  s t a t e  zero, the  process never leaves it). = 1 Suppose 

'io io 

poo 
B Q: f o r  a l l  i. Then pn tt N t h a t  there  i s  some a > 0 so  t h a t  

~ 
~ 

'The paper has been wr i t ten  with the  hope t h a t  t h e  ideas would be 
accessible  t o  workers i n  numerical analysis who are  not p a r t i c u l a r l y  
wel l  versed i n  s tochas t ic  cont ro l  theory. A modified version, con- 
t a i n i n g  numerical r e s u l t s  and some discussion of the  cont ro l  o r i g i n  
of the  boundary value problem (*) has been w r i t t e n  and w i l l  eventually 
appear i n  an appropriate engineering journal.  

ttThis condition i s  c l e a r l y  s a t i s f i e d  i f ,  and only i f ,  f o r  each i there  
i s  a chain of s t a t e s  il, ..., ir s o  t h a t  pii pi . . .p i  pi > 0. 

1 1 2  r-1 r r 

1 
I 
I 
I 
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i s  nondecreasingt i n  n and 

m 
P E  z L(1-a)  . 

Suppose t h a t  there  i s  a r e a l  valued function K ( . )  on S, ca l led  the  

' c o s t '  and K(0) = 0. Let E.Y denote t h e  'conditional '  expectation 

of Y, given X = i; i.e., E . Y  = E[YIX = i]. Then, t h e  average 

cost ,  defined by 

1 

0 1 0 

a0 

C ( i )  = Ei c K(X ) n n=O 

ttt i s  f i n i t e t t  by (2)  and s a t i s f i e s  [2], [ 3 ] ,  

N 
C ( i )  = p.  . C ( j )  + K ( i )  = EiC(X1) + K ( i )  

1 lJ 

T 
n i s  nondecreasing since s t a t e  0 i s  absorbing and p m+ n 2 

n m  n Suppose it i s  t r u e  f o r  
P i  0 i o  

(2) i s  t r u e  f o r  m = 1. 
PioPoo Pio.  

( r + l ) N  r N  N r N  N 

r r+ 1 

n: = r. Then, by the  Markov property, pio 
= P i O P O O  + j=l c PijPj0 N 

l-(l-a)r + Q: c prfN 2 l-(l-Q:)r + a(1-a) = 1-(1-a) . 
j=1 1J  

W 

t t L e t  K = m a x  K ( i ) .  Then C ( i )  5 K c P(Xn # 0). But, by ( 2 ) ,  t h e  
i n=O 

sum i s  f in i t e .  
03 

t t t C  (i) = K ( i )  + Ei c K(Xn) . But t h e  l a t t e r  sum equals EiC (X,) which, 
n=l 

N 
i n  t u r n  equals C pijC(j) .  

j=1 
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To each state i = 1,. . .,N we now associate a parameter u taking i 

values in a compact set U. Let the p. . (ui) and K(i,ui) be con- 
1J - 

tinuous in the ui. Let K(0,u) = 0 and poo(u) = 1. u is called 

a control, and TT = (ul,. . . ,%) 
i 

a control policy [ 2 ] ,  [3]. To each 

fixed TT (which fixes the ( a .  . (ui))). There is a corresponding cost 

which we denote as The object of stochastic control theory 
1J 

{CTT(i)). 

(for discrete Markov chains) is the selection of the TT (or, equiv- 

alently, the transition probabilities (pij(ui), ui E U)) which 

minimizes' the cost 3 )  (u(Xn) is written in lieu of 
n 

(4) 

n 
1J 

Further, let 

time k,k = 0 ,..., n-1). Suppose that 

p .  . ( T ~ ,  . . . ,TT~-~ ) = P{Xn = jlXo = i, and rk used at 

This condition holds if to each i there is some chain of states 

il,. . ., ir so that 

i d  pii (ui)pi (ui )...pi (ui )P. (ui ) > 0. 
(Uj3 1 1 2  1 r-1 r r-1 lr0 r 

'The minimization could be replaced by a maximization, as noted in the 
For definiteness, except in Example 2, a remark following Theorem 2. 

minimization is used. 

1 
I 
I 
1 
I 
I 
1 

I 
1 
1 
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n n 
1J  

Write P. . ('IT,. . .,T) as pij  (T).  Under our 
.c 

ssumptions, t h e  optimum 

Tr 
cont ro l  e x i s t s '  and t h e  corresponding minimum cos t  

s a t i s f i e s  (see [ 2 ] ,  [ 3 ]  and Section IV); 

C ( i )  3 inf C (i) 
Tr 

N 

U.EU 1 
C ( i )  = min ( c pij(ui)C(j)  + K(i,ui)). 

1 

( 5 )  

Furthermore, f o r  any i n i t i a l  C (i), the  sequence C n ( i )  defined by 
0 - 

N 
(i) = min ( P.  .(ui)Cn(i) + K(i,ui)) .  

u .EU 1 lJ 
'n+ 1 

1 

converges [ 3 ]  t o  C ( i ) .  This i s  t he  c r u c i a l  f a c t  f o r  Par t  11. Some 

ins igh t  i n t o  the  reasonably simple der ivat ion w i l l  be given i n  Par t s  

I11 and IV.  I n  Par t  I V ,  we extend t h e  convergence theorem t o  t h e  

Gauss-Seidel form 

and give conditions under which (7) i s  s t r i c t l y  b e t t e r  than (6). 

(7) always converges i f  (6) does, and t o  the  same unique solut ion.  Further- 

more, (7) has only about half  the memory requirements of (6). 

A Remark on t h e  Physical In te rpre ta t ion  of (*) and ( 5 ) .  - - - -- 
A 

Suppose t h a t  a random diffusion process i s  governed by t h e  ( I t o )  

vector  s tochas t ic  d i f f e r e n t i a l  equation [ 5 ]  

'Existence i s  e s s e n t i a l l y  proved i n  t h e  reference [ 3 ]  and i s  proved i n  
Section I V .  A s  noted there,  the proof can e a s i l y  be changed t o  
correspond t o  the  'maximization' problem. 
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dx = f (x,u)dt + v(x)dz, a (x) = $ v i k  (x)vkj (x). 
k i j  

u = U ( X )  i s  a ' cont ro l ' ,  taking values i n  U. Define t h e  cost ,  

corresponding t o  a cont ro l  ut  

i s  the  expectation conditioned i n  t h e  event t h a t  t h e  
EX 

where 

i n i t i a l  condition i s  x E: D, and T i s  t h e  f i r s t  arrival time on 

a. Purely formally, def ine 

Then V(x) formally satisfies (*). Under c e r t a i n  conditions,  t he re  

i s  an optimal Cu (x) = V ( x )  which, i n  turn,  s a t i s f i e s  

(*) . See [ 6 ] ,  [ T I .  I n  Examples 1 and 2, we show how t o  determine 

difference approximations t o  (*) which correspond t o  a form such as 

0 
0 u = u , and 

( 5 ) .  

problem i s  meaningful, it tu rns  out t h a t  t h e  so lu t ion  t o  ( 5 )  (which 

I n  such a case, whether o r  not t h e  o r i g i n a l  optimal con t ro l  

exists and is  unique) i s  the so lu t ion  t o  an optimization problem f o r  

a Markov chain c lose ly  r e l a t e d  t o  t h e  process . Xt 
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11. A Method fo r  t he  Numerical Solution of E l l i p t i c  Nonlinear 

Boundary Value Problems. 
-- - - 

Two simple examples w i l l  s u f f i ce  t o  i l lus t ra te  the  method. 

Example 1. Let h > 0 be the  s t ep  s i z e  and e the  u n i t  
i 

t h  vector  i n  the  i coordinate direct ion.  For no ta t iona l  con- 

venience, it i s  supposed t h a t  the s t e p  s i z e  i s  the  same i n  each 

d i rec t ion .  

different ;  of course, t h e  conditions (9) would then be d i f f e r -  

ent.  Let 

The method i s  c lear ly  v a l i d  i f  t he  s t e p  s i zes  a r e  

or, equivalently,  

be defined i n  the  rectangle  R = (x:-A * x * A -A * x * A 1, 

n h = 2A n h = 2A Then there a re  (n - l ) ( n  1) points  of t h e  

g r i d  i n t e r n a l  t o  R and (n,+l) (n2+1) E N t o t a l  g r id  points .  The 

1 -  1 -  1’ 2 -  2 -  2 

1 1’ 2 2’ 1 2- 

a and f a re  functions of x and we only suppose t h a t  t 
i j  

all 2 0, a12 2 0 

+ h/2 “22 ’ 2a12 
V(x) = B(x) on &. 

(9) 

If a12 < 0, the  difference scheme (10) f o r  a%/&l&2 must be changed. t 



F i r s t ,  a difference scheme f o r  

w i l l  be given, where u i s  some function of x sa t i s fy ing  1111 5 1. 

Then the  difference equations w i l l  be iden t i f i ed  with a pa r t i cu la r  

optimal stochastic cont ro l  problem,and convergence of t he  correspond- 

ing i t e r a t ive  procedures (6) or (7) shown - for any i n i t i a l  guess. 

Finally, the  l i m i t  of the  sequence of i t e r a t ions  w i l l  be the  unique 

solut ion of a non-linear difference scheme f o r  (8). The reason f o r  

our par t icu lar  choice of difference approximations w i l l  be seen i n  the  

sequel. A t  each gr id  point in te rna l  t o  R, l e t  

+ [V(x+e2h)-V(x-e2h)]/2h (11) 

&/axl + [V(x+elh)-V(x)]/h i f  f ( x )  h 0 ( 1 2 4  

&I/&, + [ V(x) -V(x-e,h)] /h i f  f (x) < 0. (13) 

Then, using the symbol V(x) 

equations also, the subs t i tu t ion  of (13)- (12) i n t o  (8')) gives 

for  t he  solut ion of t h e  difference 

0 = a 11 [V(x+e 1 h)+V(x-e 1 h) -2V(x)]+2aU[V(x+e2h+elh) 

-V(x+e2h) -V(x)+V(x-e,h) ] 

2 + V(x+e2h)+V(x-e2h) -2V(x)]+k(x)h 

( V(x+elh) -V(x) 

+ hf i V(x)  -V(x-elh) 1 + +[V(x+e2h) -V(x-e2h)] 



11 

where t h e  upper entry is used if f I 0 and v i ce  versa. Collect ing 

terms and dividing by the  coef f ic ien t  of V(x) yields ,  f o r  x in- 

t e r n a l  t o  R, 

a + 2a12 + h l f l  I Q v(x)  = 

11 

V (x+ e2 h ) V (x- e2h) 
+ Q f a22-2a12+hu/2] + Q [a22-hu/21 (14 1 

2a12 k(x)h2 + V(x+e h+e h)- + - 
2 1 Q  Q '  

where 

Now we r e l a t e  (14) t o  a control  problem. The coe f f i c i en t s  of 

on t h e  r i g h t  of (14) have t h e  character  of probabi l i t i es ;  t h e  V ( . )  

they a re  norr-negative and sum t o  uni ty .  Now, order t he  N g r id  

points  on 

point.  We use both notations '2  and ( i t  t o  r e f e r  t o  t h e  g r id  

points .  If x i s  i n t e r n a l  t o  R, def ine K(x,u) by h k(x)/Q(x). 

If x E &, define K(x,u) by B(x). Define an absorbing s t a t e  0 

and def ine pxo = 1 for  any x on &, and any con t ro l  u(x).  For 

x i n t e r n a l  t o  R, t h e  p (u) a re  given by the  coe f f i c i en t s  of 

R, and associate  a s t a t e  of a Markov process with each 

2 

- 

- 
X y  

v ( Y )  on the  

'x,x+e h (4 
2 

and u e U =  

r i g h t  of (14). For each x i n t e r n a l  t o  R, only 

and 'x,x-e2h 

[ 411. A control pol icy IJ = (ul,. . . ,%) f o r  t h i s  

(u) depend on t h e  cont ro l  parameter u, 



1 2  

problem i s  merely an associat ion of some number i n  

each s t a t e  on R. 

[-1,1] with 

For the moment suppose t h a t  the t r a n s i t i o n  p r o b a b i l i t i e s  

s a t i s f y  

Then by the  r e s u l t s  i n  Par t  I, t h e  T minimizing the  C(x) = 

E c K(Xn,u(Xn)) 
00 

e x i s t s  and s a t i s f i e s  
X 

0 

C(x+e2h) C(x-e2h) 
+ Q [ a22- 2a12+hu /2] + Q [ “22-hu /21+ (16) 

2a12 k (x) h2 
Q + C(x+e h+e h)- + 

2 1 Q  

f o r  x i n t e r n a l  t o  R. Since p = 1 and K(x,U(x)) = B(x) f o r  

x on &,we assign 
x o  - 

c ( X )  = B(x) = K(x,U(x)), 

f o r  x on &. 

Furthermore, replacing C(.) on t h e  l e f t  and r i g h t  of (16)by 

( 0 )  and C n ( = ) ,  resp, t h e  r e s u l t i n g  i t e r a t i v e  process converges t o  t h e  ‘n+ 1 
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I 
1 
I 
I 
I 
I 
I 
i. 

1 
I 
1 

unique solut ion of  (16) f o r  any C o ( - ) .  Performing the  minimizatisn 

i n  (16) y i e lds  u(x) = -signrC(x+e2h) - C(x-e2h)]. It i s  c l e a r  t ha t ,  

i f  

then the  C(x) of (16) s a t i s f y  (13). There can be no other V(x) 

sa t i s fy ing  (l3), by v i r t u e  o f  the uniqueness of 

t h e  l as t  term i n  (13) as 

(13) i s  a difference equation f o r  (8). Since C(x) a l so  s a t i s f i e s  

t h e  boundary conditions, the  demonstration of  convergence i s  com- 

p l e t e ,  except fo r  (13). 

~ ( x )  = -sign[(V(x+e2h) - V(x-e2h) i s  subs t i t u t ed  i n t o  (l?), 

C(x). Now, wr i t ing  

-hl V(x+e2h)-V(x-e2h) I /2, we note t h a t  

Property (13) i s  proved as follows. Fix x and l e t  x + e nh 2 

be on the  boundary &. Denote the s t a t e  x + e2ih by i, i 2 1. Since 

2 y >  0, and p = 1 f o r  y on &, 'x, x+e 2h (4 2 (a 22-2"12-h/2)/Q - Yo 

w e  have 

The difference schemes (lo), (ll), (12) a re  se lec ted  t o  assure 

t h a t  t he  coef f ic ien ts  i n  (14) would be non-negative and sum t o  a t  - -- ---- 
most unity.  Other choices a r e  ce r t a in ly  poss ib le ,  but it must be noted -- 
t h a t  the  difference equations corresponding t o  any a r b i t r a r y  d i f fe rence  

scheme may not correspond t o  a control  problem and, consequently, t he  

above proof of convergence may n o t  be va l id .  

i n  

preferab le  t o  the  Jacobi procedure - a t  l e a s t  i f  

mentally, it has been found t o  be general ly  preferable .  

Final ly ,  i f  k(x)  2 c > 0 

D, Theorem 2 implies t h a t  t h e  Gauss-Seidel procedure i s  s t r i c t l y  

C (i) = 0. Experi- 
0 

Example 2. We would like t o  consider t h e  2-dimensional problem 

(18), i n  t he  domain R of Example 1 
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C a i j T  av2 + fq + + k(x)  = 0 
1 

or, equivalently, 

I n  order t o  prove convergence, we w i l l  need a bound on the  

term. 

- 
Hence, we w i l l  a c tua l ly  obtain a numerical scheme f o r  

(19) ”% + f a  + max [ u ~ - u ] + k = O .  h r 2  aij- l u l s c  
1 1  

Bounding by c l i nea r i zes  the (&/8:)/4 term f o r  la rge  values: 

and the  maximized term i n  (181) equals 

( ~ F V J & J / ~  if la/h21 5 2c 

c1av/h21 -c2 if la/h21 > 2c 

The difference schemes (10)-(12) w i l l  be used. Then f o r  any f ixed u = u(x), 

(20) 1::: + h l f l  1 
i 1 a11 + + hlfl 

V(x)Q(x) = V(x+elh) 

+ V(x+e2h) [ a22-2a12+hu/2] 

2 

all + 2a12 + V(x-elh) 

+ V(~-e,$)[a~~-hu/2]  + V(x+e2h+elh)2a12 - u % ~  + kh = 0. 



Let 

a > hc/2 + 2a12, a 2 0. 22 11 - 

Then the coefficients on the right of (20 )  are non-negative and sum 

to Q(x). Using the same identifications with quantities in the 

control problem as was done in Example 1, it can easily be verified 

that (15) holds here also. The optimal control problem correspond- 

ing to (20 )  is represented by (a): 

2a12 - hu-V(x-e2h) -u% 1 + V(x+e2h+elh)T 

kh2 + -  Q '  

where the maximized term equals the smallest of 

[V(x+e2h) -V(x-e2h)] 2 /16 

ch[ I V(x+e2h)-V(x-e2h) I /2-ch]. 

Upon substituting this term in (21) we get a difference scheme for 
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(18'). Replacing V i n  the  l e f t  and r i g h t  of (a) by V n+ 1 and VnY 

resp., gives an i t e r a t i v e  procedure which converges t o  the  unique 

solut ion of (a) for any 

1. 

Vo. The d e t a i l s  are exact ly  as i n  Example 



111. A - Simple Probabilistic 
Iterative Analysis. 

Derivation of Some Results in Matrix 

Much of matrix iterative analysis is devoted to the sys- 

tem AY = by where A is diagonally dominant and strictly diagonally 

dominant for some row. Let A = -D + F, where D is the diagonal 

part of A and the elements of D and F are non-negative. Such 

systems commonly arise in the numerical solution of boundary value 

problems. k t  A be N X N and write D-% = P = {pij) and 

D'Lb = K = (K(i)). 

numerical solution of Ax = b are the Jacobi 

Two well known iterative techniques for the 

= D-$Y - D'Lb 'n+ 1 n 

or, equivalently, 

N _. 

(i) = C p. .Y (j) 
1J  n j=1 'n+ 1 

and the Gauss-Seidel, which can be written 

+ K(i) 

as 

and their relative merits are well known [l]. 

probabilistic proof of their relative properties which, aside from 

its simplicity, provides some insight into the preferred ordering 

Here we offer a 



18 

of t h e  rows of A and the choice of a difference scheme, and a l s o  

leads t o  a proof t h a t  (7) i s  a t  least as good as (6) f o r  t he  non-linear 

problem. 

The pij have t h e  character  of t r a n s i t i o n  p robab i l i t i e s .  
N 

They a re  non-negative and p . .  4 1. A s  before, l e t  Xo,X1,. . . 
j=1 1J 

be a Markov chain w i t h  state space S = ( O , l ,  ..., N) and t r a n s i t i o n  
N 

j=1 
probab i l i t i e s  pij. Define p 1, pia= 1 - c Pij and k(0)  = 

0-0 = 

0. Let Y = (Y1,"*'YN ) 

By successive subs t i tu t ions ,  (23)  can be wr i t t en  as 

and def ine t h e  norm llyll = max I yil . 
i 

cy 

where t h e  qij  and z ( i )  (obtained by s u b s t i t u t i n g  t h e  Y (j), 

j < i, of (24) i n t o  ( 2 3 ) ,  reordering and equating coe f f i c i en t s  w i t h  

n+ 1 

(24 1) =e 

i-1 

qij  - - Pij + C pikakj j z i 
k= 1 

i-1 
= c P i p w  
k d  

- - Pij 

j < i  

i = l  

The ( q . . )  also have the  character  of t r a n s i t i o n  p r o b a b i l i t i e s  f o r  
=J 



w cy 

some Markov chain Xo,. . . ,Xn,  ... 
N 

on the  s t a t e  space S = (0,1,. . . , N ) .  

Define qio = 1 - qij and q o o =  1. 
1 

N Now, l e t  TY = (T Y, ... T Y) be a map of RN i n t o  R 1 ' N  
N 

(Euclidean N-space) with ith component TiY = c p.  .Y + K ( i ) .  
* j=1  'J ti 

Then 

N I I T Y - T z I I  = max I C p. . ( Y . - Z . ) ~  
i j=1 1J J J 

and, by i t e r a t i n g ,  

n 
(where pij  

'"k+n 

Thus, i f  max 1 pij + O  

PY + K = m) represents a contraction mapping with a unique f ixed 

is, again the n s tep t r a n s i t i o n  probabi l i ty  

= j IXk = i), and i s  t h e  i, jth element of the  matrix Pn). 

N n  as n + "0, (22) (or, equivalently, 
i j=1 

point.  Similarly, l e t  QY = (Q,Y, . . . ,%Y) with QiY = 
nT 

cv 11 

C q. . Y .  + K ( i ) .  Then 
j=1 l J  J 

N I I Q ~ Y - Q  n Z I ~  = max I c q n . ( y . - z . ) J  
i j=1 1J  J J 

and it i s  c l e a r  t h a t  the r e l a t i v e  r a t e s  of  convergence,,^ ,he fixed 

point,of t h e  Yn and Yn whose components a r e  given by (22) and (23) 
_ _  

depend on t h e  r e l a t i v e  r a t e s  of convergence t o  zero of c N n  p,, and 
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N n  
qij, resp., as n + 00. Theorem 1 (See (28) i n  p a r t i c u l a r )  i s  

j=1 

the  p robab i l i s t i c  proof t h a t  (23) i s  preferable  t o  (22). 

Theorem 1. Suppose t h a t  t h e  rows can be and a r e  ordered ------- 

so  t h a t  -- 

Then 

> o fo r  some j ( i )  > 1. P i j  

and - 

I n  addition - 

c onve r ge t o  the  -- same unique so lu t ion  - 

N 
C ( i )  = c p .  . C ( j )  + K ( i ) .  

j=1 =J 

N n  N n  c qij < c Pij, 
j =1 j=1 

of 

i f  e i t h e r  n > 1 or i > 1. If n = 1 and i = 1 hold simul- 

taneously, then the re  i s  s t r i c t  equa l i ty  i n  (28). 

chain introduced i n  this  section, we have 

- - -- - - 
For t h e  Markov --- - -- 

-- -- 

W 

C ( i )  Ei K(Xn) < 00 

0 

m-1 ..- - 

If Y (i) E 0 i n  (22), then Y (i) = E - 0  K(Xn). m i - - 
0 



Remark. A weakening of (26) i s  possible,  but  (26) allows f o r  a 

proof i n  an unburdened notation. 

( r e fe r r ing  t o  t h e  o r i g i n a l  form AY = b)  all > alj, a > 0 f o r  

some j < i and a > 0 f o r  some j > 1. These conditions a re  i j  

usua l ly  s a t i s f i e d  by t h e  matrix problems a r i s i n g  from boundary value 

The condition (26) means simply t h a t  
N 

2 i j  

problems. 

Remark. Since t h e  e f f ec t ive  norms of t he  contract ion operators 
N 

1 
Tn or Qn a re  the  probabi l i t i es  of not  being absorbed ( c p r j  = 

n i f  t he re  i s  a choice of difference 1 - Pio o r  C qij  = 1 - qio), 

schemes, it i s  preferable  t o  choose one with t h e  higher absorbtion 

n N n  
1 

probab i l i t i e s  f o r  t h e  range of n bf i n t e re s t .  I n  fac t ,  t he  absorbtion 

p robab i l i t i e s  can of ten  be estimated by merely observing the  d i rec ted  

graph corresponding t o  t h e  process t r a n s i t i o n  p robab i l i t i e s .  The 

p robab i l i t i e s  of moving toward the boundary & should be maximized 

by the  choice of t he  difference scheme. Furthermore, t he  qio depend 

on the  ordering of t h e  s ta tes ,  and the  graph may y i e l d  some usefu l  

information concerning preferable orderings. 

n 

We note a l s o  t h a t  t he  method i s  appl icable  i f  the  boundary 

conditions a re  of t h e  form &(x)/h? + @V(x) = B(x) where n i s  

a31 outward n o m 1  and Then, t he  process, on reaching the  

boundary, has some probabi l i ty  of being absorbed a t  s t a t e  0 at  the  next s t e p  

(proport ional  t o  f3) and some probabi l i ty  of being r e f l ec t ed  back in-  

f3 # 0. 

t o  the  i n t e r i o r  of R. 

here. 

The analysis i s  qui te  similar t o  t h a t  given 

Proof. (29) and the  l i ne  below it are  obvious and we w i l l  only 

prove (28). (3) and ( 2 6 )  imply t h a t  
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N N 

j=1 j=1 c pu = c pj 1. 

Let i = m = 2 i n  (25). Then, f o r  t h i s  value of m, and using 

(see (26)) t h e  f a c t  

(The l a t t e r  term on 

Now, supposing that 

tha t  it i s  t rue  f o r  

an i d e n t i t y  f o r  any 

t h a t  pa > 0, and (30), we obtain 

N N N m-1  

N m - 1  N 

N 

j=1 
t h e  second l i n e  of (31) i s  merely sp21 p,.) 

(28) i s  t r u e  f o r  n = 1 and i = m - 1  we show 

n = 1 and i = m. The f i r s t  two lines of (31) a r e  

m. The thir.d l i n e  holds a l s o  since, by t h e  in-  
N 

duction hypothesis and (26), 2 e, < 1 for k = 1 ,..., m-1, and 
j=1 

> 0 for some k 5 m-1. pmk 

Thus, by induction, (28) i s  t r u e  for n = 1. We now prove it 

f o r  n > 1. Since the qij  a r e  t r a n s i t i o n  p r o b a b i l i t i e s  for a 

Markov chain, we have t 

t 
(32) uses only (25) and 

s ince j # 0 and = 
j 

n+m 
i j  

t h e  Markov propcrty q = 

t h e  summation need be over j E [ l , N ]  Only 

0 by t h e  previous d e f i n i t i o n  qoo = 1. 



Subs t i tu t ing  (23)  for t h e  l e f t  hand 

(32) gives 

qik i n  the  far r i g h t  term of 

i-1 r+l 

s=l  j=1 
me l a s t  term on the  r i g h t  side of (34) i s  Pis Qsj Then 

using the  bound (33) i n  (34) and rearranging (34) gives 

N N 

j=1 j=1 
Let r = 1. Then s ince qkj ' Pkj with a s t r i c t  inequal i ty  

for k > 1, and pik > 0 for  some k > 1 (by hypothesis) we have 

N N N 2  
F( i ,2 )  c pik pkj = pij. 

k = l  j=1 j=1 

Then (28) i s  va l id  for 

Then by t he  hypothesis t h a t  pik > 0 for some k 2 1 and t he  in-  

n = 2. Suppose it i s  v a l i d  for  n = r. 
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duction hypothesis, (35) i s  bounded by 

r+l N N 
FG,r+l )  < c Pik( c Pr.) = c Pij , 

kl j=1 j=1 

and the  theorem i s  proved. 



I V .  The Gauss-Seidel Method f o r  t he  Non-Linear Problem. -- - 
n n 'V -n 

Let ?J = (ul,.. . ,%), and ?r = (G", . . . ,uN) be t h e  p o l i c i e s  
n n 

determined by t h e  minimizing 

the  nth i t e r a t i o n .  Let P 

= N T J C ,  + K(Q Then 'n+1 

'n+l - by (7), we may wr i te  
- - 

operations i n  ( 6 ) ,  and ( 7 ) ,  resp., a t  

Similarly,  once t h e  ? i s  determined n 

determined by (a) i n  terms of t h e  {pij(z:)) and 

L e t  ?r' = (ui, ... ,%) be an a r b i t r a r y  pol icy 

i, 1 5 i 5 N, which s a t i s f i e s  t h e  

there  i s  a chain of states 

I 1 (depending on ?rl and i) f o r  which K ( i  r r 

the  s e t  of s t a t e s  

each IT' and i i n  

i2...>i 
I O J  

K(  it;:) ) . 
Define Io as 

condition: f o r  

i > i  > 1 

,u! ) > 0 and 
1 r 

P i i  (ut ) * ' P i  (u; ) > 0. Thus Io contains those s t a t e s  which 
1 1  r-1 r r-1 

can reach ( f o r  any control)  some lower s t a t e ,  v i a  a 'decreasing'  chain, 

where the  lower s t a t e  has a posi t ive cos t  f o r  the  chosen control .  

(Both the  chain and the  lower s t a t e  may depend on the  cont ro l . )  Define 

n 2 1, as those sa t i s fy ing  the  condition: i i s  In' t he  s e t  of s t a t e s  

i n  In i f  f o r  any cont ro l  uf, there  i s  some s t a t e  j i n  

(depending on u!) for  which p .  .("I) > 0. Then, In-l i s  reachable 

from In i n  one s t e p  f o r  any control .  A s  w i l l  appear i n  t h e  proof of 

Theorem 2, i f  

(under t h e  other  conditions of t h e  theorem). 

In-1  

1 =J 

h 

(1,. . . , N )  = S = I +**-+I  then (7) i s  preferab le  t o  (6) 
0 N' 

This condition says t h a t  

w i l l  eventual ly  be 
I O  given any cont ro l  sequence, some state i n  

reached. This i s  c l e a r l y  a necessary condition f o r  (7) t o  be s t r i c t l y  
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preferable  t o  ( 6 ) ,  as can be seen from t h e  way t h e  successive sub- 

s t i t u t i o n s  i n  (7) a re  ca r r i ed  out. I n  any case ( 3 6 )  holds. 

Theorem 2. Suppose U i s  compact and t h e  p.  . ( ) - and 
1 J  - -- 

K(i;) a r e  continuous. K(O, . )  0 - and p (.) 3 1. -- For any 00 - 
u E U, l e t  - 

p .  . (u)  > 0 
1J 

p .  . (u)  > 0 
1J 

f o r  some -- 
f o r  some -- 

(26' I 

3 s  j ( i , u )  5 i - l ( f o r  i > 1) 

j ( i , u )  > 1. 

Then both (6) and (7) converge -- t o  L e  unique fin,,e so lu t ion  c of ( 5 ) .  

Let C (i) = ? (i) = 0 and K(i,u) 2 0, i = 1 ,..., N. Then 

-- - 

- - 0 0 - 

I n  addition, for i i n  Io+ -+I n' - - 

.%# 

'm+ n (i) > cmn(i), m z 1. 

N' 
i .e . ,  (7) i s  s t r i c t l y  preferable  t o  ( 6 )  f o r  i i n  1 +***+I 0 - - c - 

Proof. The existence of a unique f i n i t e  so lu t ion  {C( i ) )  t o  

( 5 )  i s  e s sen t i a l ly  proved i n  [ 2 ] ,  [ 3 ] .  For t h e  moment, suppose t h a t  t he re  

i s  a so lu t ion .  Denote the  minimizing cont ro l  by T = (ul,. , . ,uN).  

1 
1 
1 
I 
8 
I 
1 
1 
I 



Then it i s  easy t o  v e r i f y  t h a t  

N 
C ( i )  = c p. .(ui)C(j)  + K(i,ui) 

j=1 1J  

(3 7) 

where the  [ q i j ( r ) )  and [%(i,T)) a r e  computed from t h e  (p .  . ( u i ) )  

and [K(i,ui)) as i n  (a). Also (37) i s  not decreased, f o r  any 

i 2 1, if T # T replaces T. Thus, by the  minimizing proper t ies  of 

1J 

h 

C = P(T)C + K(T) 5 P(T,)C + K(Tn)  

= P(T )Cn + K ( r n )  5 P(r)Cn + K ( T )  %+l n 

h. 

C = Q(T)C + K(T) 5 Q(;n)C + ?(; ) n 
Iu 

= Q(Gn)Zn + %(Gn) 5 Q(T);~ + ?(T). ‘n+ 1 

(38) and (39) y i e l d  

- c 5 P n+ 1 (T)(C0-C)  

- ‘n+l 

‘n+l 

5 P(Tn)* .P(To> (c-c,) 

(39) 



By Theorem 1, t h e  sums of t h e  rows i n  Pn(r)  and Qn(r) (which 

(T),  resp.)  tend t o  zero as n +eo mono- a re  pi j  (TT) and c qi j  

tonical lyland f a s t e r  f o r  Q(TT) than f o r  P(T). Next it w i l l  be shown 

t h a t  the  row sums of P(TT ) -P(r0) and *Q(T0) a l s o  tend t o  

sequence. This implies, zero as n + a  f o r  any rn..TT 

v i a  (40) and (41), t h a t  Cn + C and C + C, resp.  Note t h a t  t h e  row 

n + l  n + l  

j=1  j,=l 

n 
r u m  

Or Tn**To 0 
ru 

n 

non-absorbtion p robab i l i t i e s  - when the  process s t a r t s  i n  s t a t e  i - 

and uses 
N 

Tn(resp. TT ) f i r s t  and TT (resp.  ?r ) a t  time n 0 0 n. 

F i r s t ,  a r e s u l t  f o r  cont ro ls  which depend on the  pas t  w i l l  be --- 
obtained. Let As denote t h e  co l l ec t ion  ( u . ( i  ..-i where 

u . (io - 1 * 

a t  time s i f  Xs = j and X = io,...,Xs-l = i  As i s  a con t ro l  

pol icy at  time S depending on the  past .  L e t  hohlh2 ... As denote t h e  

cont ro l  policy: 

a t  time s; 

denote P{Xr+s = j l X s  = i and \ used a t  time k, k = s ,..., s+r-1). 

The hypothesis (26') implies t h a t  there  i s  some 

J 0 *S-ll' 

) i s  the  value of t he  con t ro l  ( l i e s  i n  U) which i s  used 

0 s-1' 

J s -1 

--- 
i s  used at  time 0, hl at time 1, ..., and As 

Let  p .  r .(hs-.*~s+r-l 
AO 

1 hO i s  j u s t  a T type of policy.  
1J 

a > 0 so  t h a t  

fo r  any sequence hs*-*hs+n-l. Furthermore, s ince  s t a t e  0 i s  ab- 

i s  nondecreasing i n  N f o r  any f ixed  N 
sorbing pio(ho.. .h-l) - 
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ho.. .h sequence. It w i l l  be proved t h a t  n' 

2 1 - nN 
Pi0 (Ao. - 

(42) holds for n = 1. Suppose t h a t  i t s  t r u e  for n = r. Then, 

using the  induction hypothesis and p ( a )  1, S 
00 

r+ 1 = 1 - ( L a )  

and (42) i s  proved. This implies t h a t  t h e  row sums N n  p.  . (rn.. .ro) 
1J j =1 

tend t o  zero as n co. Next, i n  order t o  obtain a similar r e l a t i o n  

n -  rw 
N 

f o r  q. . (rn.. .ro), t h e  ' h i s to ry  dependent' cont ro l  analogy t o  (32-33) 
j=1 1 J  

must be given. Using (12) and (32-34), 
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- N 

It w i l l  be shown t h a t  f o r  any 

Lo.. .Ar, so  t h a t  

rr...7J0, there  i s  some corresponding 

r+l N r+l c q . .  fir...Tro) 5 c Pij (ho.**hr)* 
j = l  1 J  j=1 

(44) 

(47) and (45) imply t h a t  t he  l e f t  s ide of (47) goes t o  zero as 

and hece, t h a t  En +C. 
(Theorem 1) 

n +a, 

(47) holds f o r  r = 0 since for any P 

N N c q.  .(nt) 5 c p .  . ( T I - ? ) .  
j=1 1J  j=1 =J 

For r = 1, using (43), (45) and 

we obtain 

(45) 

N 

at time 0 and *l 
where h i s  the  control  sequence which uses 1 1  

I 
I 
I 
8 
I 
I 
I 
1 
i 
I 
1 
I 
D 
1 
1 
1 
1 
1 
1 
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rw 

hl at  time 1; where h = ?J on the  s e t  of s t a t e s  1 0  

and hl = n1 on t h e  s e t  of s t a t e s  (k:k < i ) .  Thus (4  rw 

k:k 2 i ) ,  

) holds for 

r = 2. I n  general  suppose (44) holds for r. Then, repeat ing t h e  

s teps  (47), and using the induction hypothesis and (46), 

N N r-1 rw N 

k= i j=1 k= 1 

f o r  some h;, . . . and A:. . .A" F ina l ly  r-1' - 

j = 1  

where ho...hr-l = A;. .. i f  X1 h i and ho... xr-l = 7$..*A'f r-1 

i f  X1 < i. Thus (44) holds f o r  a l l  r. 

We now prove the  last  asser t ion  of the Theorem. Let ai 5 C ( i ) .  

Then s ince it i s  now supposed t h a t  K ( . , i )  Z 0, we have 
1 

N 
p .  E min [ p.  .(")aj + K(i,u)] C ( i ) .  
1 u j=1 =J (49) 

Furthermore the  p are  nondecreasing as t h e  (aj) increase.  Let i - 
C o ( i )  = C (i) = 0 from here on. It i s  e a s i l y  v e r i f i e d  t h a t  C = 

[Cn(i))  i s  t h e  optimum cost f o r  an n + 1 stage cont ro l  process 

Cv 

n --- 0 -  
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and i s  nondecreasing (it tends t o  C )  as  n increases .  It i s  next 

ver i f ied ,  using (49), t h a t  C n ( i )  5 C ( i ) ,  f o r  a l l  n: Note t h a t  

C , ( i )  = in f  K(i ,u) .  
U 

N 

From t h e  l as t  l i n e  of (27), for any 7r' = 

(ui ,  ";u) 

n (70), the  remark below (49), and ? = Co = 0, imply t h a t  ?! I C 

f o r  a l l  n. Note t h a t  (70)  i s  a s t r i c t  inequal i ty  f o r  i i n  

and - any 

C n ( i )  f o r  i i n  

i .e . ,  for any u i n  U, t he re  i s  some j i n  Io so  t h a t  

p .  . (u )  > 0. Then, s ince C n ( j )  > C n ( j )  f o r  j E I and E n ( j )  
h C ( j )  otherwise ( fo r  n 2 l) ,we have ~ ~ + ~ ( i )  > Cn+l ( i )  f o r  i 

i n  I + Io and n I 1. Repeating t h i s  procedure gives C (i) > 1 n+ r 

c (i) f o r  i i n  Io+. *+Ir, and a l l  n h 1. 

0 n 

IO' 
These remarks together  with (70) imply t h a t  zn(i)  > 

and a l l  n h 1. Next suppose t h a t  i e Il; IO 

- 
N 

0 
N 

1 J  

n 
ru 

n+ r 
We must  only prove t h a t  ( 3 )  has a unique f i n i t e  so lu t ion .  

By what has been said,  it i s  c l e a r  t ha t ,  under t h e  hypotheses and 

f o r  any fixed T = (ul, ... ,%) with ui E U, t h a t  

N 
C T ( i )  = c p. .(ui)CT(j) + K(i,ui) 

j=1 =J 

has a unique solut ion.  A l s o ,  f o r  any V and ?ft, t he re  i s  a IT 

such t h a t  

p. 26 for a proof).  

7 f '  C T ( i )  5 min (CT' (i), C (i)), i = 1 ,..., N. (See [ 3 ] ,  
n Thus there  i s  a sequence 7rn = (ul,. . . 

I 
I 
I 
I 
I 

1 
1 
I 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
1 
I 
I 
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so that 

I f  

C n(i) + glb C TT (i) C(i), i = 1 ,..., N. 
TT 

Also 

TT n n;l N 

n n j=1 1J  
lim C (i) = lim [ P. .(u;)C “j) + K(i,ui)l 

n N 
C(i) = lim [ c p. .(u;)C(j) + K(i,ui)]. 

n j=1 1J  

The continuity of p ( 0 )  and K(i,.) and compactness of U imply 

that there is some 
ij 

7-f = (ul, ... ,%) so that 

N 
C(i) = p .  .(ui)C(j) + K(i,ui). 

j=1 1 J  

Ti- The definition C(i) = glb C (i) implies that C(i) satisfies (9) .  Q.E.D. 
7T 
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